

Automating Index Preparation*

Pehong Chent
Michael A. Harrison

Computer Science Division
University of CaliforniaI

Berkeley, CA 94720

March 23, 1987

Abstract

Index preparation is a tedious and time-consuming task. In this paper we indicate
* how the indexing process can be automated in a way which is largely independent of a

specific typesetting system and independent of the format being used. Fundamental issues
-~ related to this process are identified and analyzed. Specifically, we describe a framework

for placing index commands in the document and a general purpose index processor which
transforms a raw index into an alphabetized version. The resulting system has proved very
useful and effective in producing indexes for a book and several technical manuals. An
evaluation of our system against indexing facilities available across a variety of document
preparation environments is given.

1 Introduction

Although there has been a great deal of activity in electronic publishing [6], there are still
V aspects of document composition that have not been fully automated. One of the most

time-consuming concerns is the preparation of the index. In ordinary books, an index is an
important feature which allows a reader to access essential information easily. A poor index '
with many omissions or poorly chosen concepts actually detracts from other aspects of the
book. For highly complex technical material which might include computer programs, it is

-, highly desirable to have different kinds of indices which might reference even the identifiers of
a programming language. A good example of an elaborate indexing scheme can be found in
Knuth's ThX program [15] and his WEB system [13] in general. For computer programs like
these, completeness is essential and the accuracy of traditional hand methods will not suffice.

*Sponsored in part by the National Science Foundation under Grant MCS-8311787, and by the Defense
Advanced Research Projects Agency (DoD)), ARPA Order No. 4871, monitored by Space Naval Warfare
Systems Command, under Contract No. N00039-84-C-0089.

tAdditionaL support has been provided by an IBM Graduate Fellowship.

1V

% % % %

SECURITY CLASSIFICATION OF THIS PAGE "f 0&

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

unlimited
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Regents of the Universit (If applicable)
of California SPAWAR

6c, ADDRESS (Oty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Berkeley, California 94720 Space and Naval Warfare Systems Command
Washington, DC 20363-5100

Ba. NAME OF FUNDING/SPONSORING 8Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Automating Index Preparation

12. PERSONAL AUTHOR(S)pehong Chen, Michael Harrison
*i

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S PAGE COUNT
technical FROM TO * March 23, 1987 * 25

16 SUPPLEMENTARY NOTATION

' 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
INUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. E3DTIC USERS unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

'
'- ". %,% % ' % =, " ",.'-"- , .- ",'- - "' % "- . % "- . "-" .. ' % % % % % " % ' % ",' ' % % % % " ", --

SECURITY CLASSIFICATION OF THIS PAGE%

.1%

SEUIYCASFCAINO HSPC

V,

3

Source

Interactive Fratr I ia

EditorIne

Figure 1: The sequential flow of index processing. Circles in the picture represent processors.
squares are documents or auxiliary files. In Step I, the author uses an editor to place index
commands in the document. In Step II, a raw index is generated as a by-product of formatting.
In Step III, this raw index together with some optional style information are taken as inpult
to the index processor and an alphabetized version is created. Finally in Step IN', the index
is formatted to yield the ultimate result.

.

II. Creating a raw index file whose entries each consists of two arguments: the index key
and the page on which the index command appears.

III. Processing the raw index file. This means all index keys are sorted alphabetically.
Page numbers under the same key are merged and successive numbers are collected into
intervals (e.g. 1, 2, 3, 4, 5 is replaced by 1-5). Subitems within an entry, if any,
are properly handled.

IV. Formatting the processed index. The result is the actual index.

The idea is illustrated in Figure 1, wh(re roman capitals I-IV marking the edges correspond
to the four steps mentioned here. It is clear that this is a highly sequential procedure, for the
input to one step depends upon the result from the previous one.

Figure 2 demonstrates an example as a stepwise development of the process. In TITEX all
commands begin with a backslash (\).2 Figure 2.a shows some occurrences of index commands
(\index) in the document source, with corresponding pages listed on the left. The page
number is not part of the source file since at file-preparation time, we do not know on which
page a given textual material will eventually appear. Figure 2.a includes these numbers just
to indicate that ultimately these entries would appear on those pages. Figure 2.b shows a raw
index file is generated by IUTEX. After running through the index processor, it becomes an
alphabetized index with commands specifying a particular output appearance (Figure 2.c).
The result after formatting is shown in Figure 2.d.

Based on the exa.mple given in Figure 2, these four steps are explained below, where
Steps I and III ase further expanded in Sections 4 and 3, respectively. Issues involved in
Steps II and IV are less complex and are only covered in this section.

2.1 Placing Index Commands

Step I deals with placing index commands in the document. In a language-based environment.
the commands can simply be inserted in the document source with a text editor. They will be
utilized by the formatter in generating raw index entries (Step II) but will contribute nothing
to the output appearance as far as the corresponding pages are concerned.

In a direct manipulation system, index commands cannot be entered directly in the docu-
ment under manipulation. A possible solution is to put them in "shadow pages" instead of the
document output representation. A shadow document is the original document plus special
tags which, among other things, mark logical objects like comments, bibliographical citations.

cross references, indexes, etc. These tags are essential to document composition but do not v,.

correspond to physical appearance in their original forms. Upon request the corresponding

markers of these tags can be displayed along with the original document for editing purposes.

For the user's visual cue, each type of tags can be represented by a different marker symbol.
Normally for each tag entered in the document, an embedded annotation can be specified.

An additional window can be created to show the associated annotation if necessary. This

2We should say in TEX in general, for LATEX is a dialect of TtX.

.., ,,..

Page iv: \index~alpha} \indexentry~alpha}{iv}
Pagel1: \indexfalpha} \indexentry~alpha}{1}
Page 2: \index~alpha} \indexentry~alpha}{2

-- Page 3: \index~alpha} \indexentry~alpha}3}
Page 11: \index~alphabetal see~beta}} \indexentry~alphabetal see~betal}{11}
Page 14: \index~alphaO\it alpha\/} \indexentry~alpha@{\it; alpha\/}}{141

\index~beta Ibold} \indexentry~betalIbold}{14}
Page 22: \index~alpha!beta! gamma} \indexentry~alpha!beta!gaina}{221
Page 38: \index~alpha! delta} \indexentry~alpha! delta}{38)

\begin~theindexl alpha, iv, 1-3
betaF.\item alpha, iv, 1-3 gamma, 22

\subitem beta delta, 38
\subsubitem gamma, 22 alpha, 14

\subitem delta, 38 aiphabeta, see beta
\item {\it alpha\/I, 14
\item alphabeta, \see~beta}{11 beta, 14

\ indexspace

\item beta, \bold{14}

\end~theindex}

Figure 2: An example in I4TEX showing the stepwise development of index processing. (a)
Top Left: Occurrences of index commands in the document source. Note that page numbers
are unknown at the time of input when a source-based formatter like TiTEX is used. We
include page numbers here simply to illustrate where each instance will occur. (b) Top Right:
raw index file generated by LUTEX. (c) Bottom Left: alphabetized index file. (d) Bottom
Right: formatted final index.

6

shadow document approach is widely adopted by WYSIWYG systems such as Xerox STAR [1],
FRAME MAKER [3], and MICROSOFT WORD 3.0 [4].

V, The primary issue in step I for both paradligms is whether or not a systematic mechanism
can be derived to facilitate the entering of index commands or tags. Section 4 gives details

ofageneral model we have designed which accomplishs this task.

2.2 Generating the Raw Index thgeeaerainxflemybremd(n

StpII is concerned with attaching the current page number to each index command placed
intedocument. Thecomnusdithgeeaerainefieaybrnmd(n

orexample, it is changed from \index to \indexentry). The entries are in the exact order
iwhich they appear in the document source. Thus as long as the current page number
iaccessible, be it language-based or direct manipulation, generating raw index entries is

relatively straightforward.
There are minor differences between the two paradigms in this step, however. The gener-

ation of raw index entries in a language-based system, like formatting itself, is by and large a
"batch job". In a WYSIWYG editor, it is easier to maintain the list of raw index entries in-

* crementally because the document being manipulated is always formatted so the page number
is always current.

2.3 Index Processing

A number of issues are of interest in the processing of raw index entries. We describe some
high-level issues below with references to the example given in Figure 2; details about how
these tasks can be realized are postponed until Section 3.

1 . Permutation. Index entries are sorted alphabetically (Figure 2.c). The index processor
must differentiate among different types of keys such as strings, numbers, and special
symbols. Upper and lower case letters should be distinguished. Furthermore, it may be
necessary to handle roman, arabic, and alphabetic page numbers.%

2. Merging. Different page numbers corresponding to the same index key are merged into
one list. Also, three or more successive page numbers are abbreviated as a range (as in
the case of alpha, iv, 1-3, Figure 2.c).

3. Subindexing. Multi-level indexing is supported. This refers to that entries sharing a
common prefix are grouped together under the same prefix key. The special symbol

!serves as the level operator in the example (Figure 2.a and 2.b). Primary indexes
are converted to first level items (the \item entries in Figure 2.c) while subindexes are
converted to lower level items (e.g. \subitem or \subsubitem, entries in Figure 2.c).

4. Actual Field. The distinction between a sort key and its actual field is made explicit.
Sort keys are used in comparison while their actual counterparts are what end up being
placed in the printed index. In the example the 'C' sign is used as the actual field

1~%

__ .~. -.-6Z

- yrrrrr ~q - , -.- "rF '.r-r r .-.- .F .r- - -

operator which means its preceding string is the sort key and its succeeding string is
the actual key (e.g. the \index{alphaW{\it alpha\/} in Figure 2.a). The same sort
key with and without an actual field are treated as two separate entries (cf. alpha and

X. alpha in the example). If a key contains no actual operator, it is used as both the sort
field and the actual field.

The separation of a sort key from its actual field makes entry sorting much easier. If
there were only one field, the comparison routine would have to ignore syntactic sugar
related to output appearance and compare only the "real" keywords. For instance, in

,.1 {\it alpha\/}, the program has to ignore the font setting command \it, the italic
correction command \/, and the scope delimiters {} and concentrate only on the string
alpha. In general, it is impossible to know all the patterns that the index processor
ought to ignore. But with the separation of the fields, the sort key is used as a verba-
tim string in comparison; any special effect can be achieved via the actual field. The
comparison algorithm has nothing to ignore and is thus simplified.

5. Page Encapsulation. Page numbers can be encapsulated using the 'I' operator. In the
example, page 14 on which \index{beta} occurs is set in boldface, as represented by
the command \bold. The ability to set page numbers in different fonts allows the index
to convey more information about whatever is being indexed. For instance, the place
where a definition occurs can be set in one font, its primary example in a second, and
others in a third.

6. Cross Referencing. Some index entries make references to others. In our example the
alphabeta entry is a reference to beta, as indicated by the see phrase. However, the
page number disappears after formatting (Step IV), hence it is immaterial where index
commands dealing with cross references like see occur in the document. This is a special
case of page encapsulation (see{beta} appears after the '1' operator). Variations like
see also which gives page numbers as well as references to other entries will work in the
same way. .'-.4.

7. Input/Output Style. In order to meet the design goal of being formatter- and format-
independent, the index processor must be able to handle a variety of formats. There
are two reasons for considering this in the input side: (1) Raw index files generated
by systems other than UTEX may not comply to the default format. (2) The basic
framework established for processing indexes can also be used to process other objects
of similar nature (e.g. glossaries). But these other objects will certainly have a different
keyword (e.g. \glossaryentry as opposed to \indexentry) in the very least. Similarly
in the output side the index style may vary for different systems. Even within the same.
formatting system, the index may have to look differently under different publishing
requirements. In other words, there must be a way to inform the processor what input

format to expect and in what output style should the final index be generated. - ."

": ! . - °

2.4 Index Formatting V-

Two key issues in this last step are (1) support for multiple styles and (2) formatting inde-
pendence. First, the formatting style macros used in Step III output must be defined. In our
example, the global environment (\begin{theindex}... \end{theindex)) tells IUTEX to use
a two-column page layout. Each \item is left justified against the column margin and each
\subitem is indented by 20 points, \subsubitem by 30, etc. There is a vertical space bound
to \indexspace inserted before the beginning of a new letter (e.g. before beta). %

The formatting independence problem refers to whether or not the final index can be
formatted independently with respect to the entire document. Indexing is supposed to be
the last step of document preparation, which means it is attempted only when the entire
document is finalized. It is desirable to be able to generate the index without reformatting
the entire document. In order to do separate formatting, the global context must be known.
In our design, this is made possible by the customizable style facility. One can redefine
preamble and postamble to invoke a style consistent with the original document.

The other information needed to perform effective separate formatting is the starting page
number for the index. A related style issue is involved here. Some styles require that the
index start on an even or odd page number. In either case, there must be provisions for
including the correct starting page number in the pre-formatted version of index.

3 Index Processing

The index processor performs the tasks indicated in Section 2.3 - permutation, page number
merging, subindexing, style handling, and other special effects - in multiple passes. First
the input format and output style are scanned and analyzed. Entries in the input file are
then processed. Next, all legal entries are sorted. Finally the output index is generated in
the last pass. We examine each of these passes closely in this section.

3.1 Input Format

Table 1 is a summary of the input format which consists of a list of <specifier, attribute>
tuples. These attributes are the essential tokens and delimiters needed in scanning the input
index file. Default string constants are enclosed in double quotes ("...") while character
constants are in single quotes ('x'). The user can override the default value by specifying a
specifier and a new attribute in the style file. The attribute of keyword is self-explanatory:
those c(,rresponding to argopen and arg-close denote the argument opening and closing
delimiters, respectively. The meanings of special operators such as level, actual, and encap

., have been covered earlier in Section 2.3. .4

The two range delimiters range-open and range-close are to be used in accordance wit 11
the encap operator. When range-open immediately follows encap (i.e. \index{... I . 1)"
it tells the index processor that an explicit range is starting. Conversely range-close sigi.a.'-
the closing of a range. In our design, three or more successive page numbers are abbreviated
as a range implicitly. The two range delimiters enforce an explicit page range formation. Thli,

"i

, I.,,

9

specifier attribute default meaning
keyword string "\\indexentry" index command
arg-open char argument opening delimiter
arg-close char argument closing delimiter
range-open char '(' page range opening delimiter
range.close char page range closing delimiter
level char index level delimiter
actual char actual key designator "
encap char ' page number encapsulator
quote char '"' quote symbol
escape char '\\' symbol which escapes quote
page-compositor string ... composite page delimiter

Table 1: Input style parameters. %

makes it possible to index an entire section or a large piece of text related to a certain concept
* without having to insert an index command in every single page.

The quote operator allows one to escape any symbols. Thus \index{foo"Cgoo} means a
sort key of foogoo rather than a sort key of foo" and an actual key of goo. As an exception.
quote, when preceded by escape (i.e. \index{ .\". .}), does not escape its succeeding
letter. This special case is included because \ is the umlaut command in TEX. Requiring
quote itself to be quoted in this case (i.e. \-) is feasible but somewhat awkward. But th,
additional rule here is that quote and escape must be distinct.

A page number can be a composite of one or more fields separated by a certain delimiter
bound to page-compositor (e.g. 11-12 for page 12 of Chapter II). This attribute allows the
lcxical analyzer to separate these fields, making the sorting of page numbers easier.

Finally the meaning of white space is something related to lexical analysis but not listed
in Table 1. There are two possibilities. The most obvious approach is to treat every index
key as a verbatim item and return whatever is given, including each white space. These ky-o
will then be compared with white space in place. A somewhat more realistic approach call,("
white space compression ignores all leading and trailing blanks as well as the wh.te spa,
immediately preceding or following any special symbol discussed above. Interword white

space may be compressed into a single blank by the scanner. Our index processor implemonL-.
both schemes, taking white space compression as the default case and white space verbatim"
as optional.

So

- ,'VP%"C' ~ -. .,.. V wrrr.-3 -- • --. ,-'-'r-r-r-r. V ----- '. - -

10

specifier J attribute default meaning

preamble string "\\begin{theindex}\n" index preamble
postamble string "\n\n\\end{theindex}\n" index postamble
setpage.prefix string "\n \\setcounter{page}{' page setting command prefix
setpage~au ix string "}\n" page setting command suffix
group-skip string "\n\n \\indexspace\n" intergroup vertical space
lethead-prefix string .. new letter heading prefix
lethead-suffix string . new letter heading suffix
lethead-flag number 0 flag designating new letter
item_0 string "\n \\item level 0 item separator
item-1 string "\n \\subitem level 1 item separator
item_2 string "\n \\subsubitem " level 2 item separator | "
item.01 string "\n \\subitem " levels 0/1 separator
item-xl string "\n \\subitem " levels x/1 separator
item_12 string "\n \\subsubitem " levels 1/2 separator
item-x2 string "\n \\subsubitem " levels x/2 separator
delim_0 string ", " level 0 key/page delimiter
delim-1 string , " level 1 key/page delimiter
delim_2 string ", level 2 key/page delimiter
delim~ string ", inter page number delimiter
delim-r string page range designator
encap.prefix string "\\" page encapsulator prefix
encap-infix string "{" page encapsulator infix
encapsuffix string "-". page encapsulator suffix
page-precedence string "rnaRA" page type precedence
line-max number 72 maximum line length
indent-_space string "\t\t" indentation for wrapped lines
indent-length number 16 length of indentation

Table 2: Output style parameters.

According to our design, the minimum data structure needed to hold the raw index i1
an array of entries, each of which is an aggregate of 2n fields for the index key, where n i-
the maximum number of index levels. Half of these fields will be holding sort keys for level- I
0 through n - 1; the other half will contain their corresponding actual keys. Also. soin,
additional fields must be included to hold the literal page number, its corresponding numr:,

counterpart, and the page encapsulator string. After lexical analysis, an input index entry --

decomposed into these fields, getting ready to be sorted. J

7-,

• %

"3 "

• °.

3.2 Output Style

Table 2 summarizes the output style parameters. Again, it is a list of <specifier, attribute>
pairs. In the default column, '\n' and At' denote a new line and a tab, respectively. We
further divide these parameters into the following groups:

1. Context. Together, preamble and postamble define the context in which the index is
to be formatted.

2. Starting Page. The starting page number can either be supplied by the user or re-
trieved automatically from the document transcript. In either case, this number can be
enclosed with setpage-pref ix and setpage-suf fix to yield a page number initializing
command. . ,C

3. New Group/Letter. The string bound to group-skip denotes the extra vertical space
needed when a group is started. For a group beginning with a different letter, the pa-
rameters lethead-pref ix and lethead-suff ix (both with a default nil string) denote
the group heading. The flag lethead.f lag has a default value of 0, which means other
than group-skip nothing else will be inserted before the group. On the other hand,
if this flag is positive, the strings bound to lethead-pref ix and lethead-suff ix will
be inserted with an instance of the new letter in uppercase in between. Similarly a
lowercase letter will be inserted if the flag is negative.

4. Entry Separators. This group includes everything with the item, prefix. First, item-i
denotes the command and indentation to be inserted when a key is started from a level
greater than or equal to i. Second, item-ij has a similar meaning, but with i = j - 1.
Finally the two item.xj's are included to handle the situation where the parent level
has no page numbers. Some styles require cases like these be different from those with
page numbers.

Table 2 depicts a system which supports three levels of subindexing. In general, suppose
n is the number of index levels supported, there will be n item.i's (0 < i < n - 1),
(n - 1) item.ij's (1 < j s n - 1,i = j - 1), and (n -) item.xj's (1 < j < n - 1).

5. Page Delimiters. Each level has a key/page delimiter which defines what is to be
inserted between a key and its first page number. Inter-page delimiter is specified by
delim-n. Range designator is given by delim-r.

6. Page Encapsulator. The attributes corresponding to encap.pref ix, encap-inf ix, and
.ncap.suff ix form what is to be placed into the output when an encapsulator is spec-
ified for a certain entry. Suppose foo is the specified encapsulator and N is the page
number, the output sequence is

encap.prefix foo encap-infix N encap-suffix

07

"", ." .

Z

12

7. Page Precedence. Five different types of numerals axe supported by most systems for
page numbering. These are lowercase roman (r), numeric or arabic (n), lowercase
alphabetic (a), uppercase roman (R), and uppercase alphabetic (A). The string bound
to page-.precedence (default "rnaRk") specifies their order.

8. Line Wrapping. In the output index file, the merged list of page numbers can be
wrapped in multiple lines, if it is longer than line-max. The newly wrapped line is
indented by indent-.space whose length is indent-l~ength. This axtificial line wrapping Z
does not make any difference in formatting, but does provide increased readability for
the pre-formatted final index. This feature may seem somewhat trivial at first glance,
but if no formatters axe involved whatsoever, the readability of the verbatim output
index becomes important immediately.

3.3 Sorting Entries

Entries in the raw index file are sorted by comparing index keys as primary and page numbers
as secondary. Index keys are sorted first; within the same index key, page numbers are sorted
numerically. Sort keys and numeric page numbers are used in comparison while the contents
of the actual fields and that of the literal page field are entered into the resulting index (cf.
the end of Section 3.1).

3.3.1 Sorting Index keys

A complete index key is an aggregate of one or more sort keys plus the same or fewer number
of actual keys. The comparison is based on sort keys, but if two aggregates have identical
sort fields and page numbers, the actual keys can be used to distinguish their order. Given
two aggregates, their primary sort keys are compared first, then their secondary keys are
compared - if the two primaries are identical, and then the third, and so forth. We discuss
a number of issues related to sort key comparisons below, where the term "index kev" refers
to a single instance of sort key rather than the aggregate index key.

Index keys can be categorized into the following groups: strings, numbers, and symbols. A
st ring is a pattern whose leading character is a letter in the alphabet. A number is a pattern
consists of all digits. A symbol is a pattern lead by a character not in the union of the English

-- - alphabet and arabic digits or something lead by a digit but mixed with non-digits. Members
of the same group should appear in sequence. Hence there are two issues concerning ordering:
one deals with entries within a group; the other is the global precedence among the three
groups in question.

There are no set rules as to which group should have precedence over the other. If we
randomly pick books from a shelf and exam-ine their indexes, some would have symbols appear
before numbers, which precede strings, while some would have strings appearing first, followed

bv symbols and numbers. Without loss of generality, our implementation adopts the former
precedence rule, but rearranging it is straightforward.

To alphabetize strings, two possible ordering schemes may be considered: word ordering
and letter ordering. Their only difference is whether a blank is treated as an effective letter iii

rrw""r ". - -' ?- ra-- "-.

13

the comparison. In word ordering, a blank takes precedence over any letter in the alphabet,
whereas in letter ordering, a space is ignored in the comparison and the next non-blank letter
is used in its place. This is best illustrated by the following example:

word order letter order

lseanlo seal r
seal sea lion

Comparing strings with mixed upper- and lower-case letters is another interesting issue. %

The following rule is used in our implementation: letters are first sorted with uppercase and
lowercase considered identical; then, within identical words the uppercase letter precedes its
lowercase counterpart. Of course, other variations are possible.

In our implementation, numbers are sorted in numeric order. For instance, 9 precedes 10,
a~s in"

.
9 (nine), 123

10 (ten), see Derek, Bo H

Finally within the group of symbols, characters are compared according to their ASCII
ordering in our implementation.

3.3.2 Sorting Page Numbers

There are three basic types of numerals for page numbers: roman, alphabetic, and arabic. A
roman numeral is a string composed from the following set of letters:3

i, v, x, 1, c, d, m

whose decimal counterpart is

1, 5, 10, 50, 100, 500, 1,000.

A roman page number can also be in all upper case of these letters, but not in mixed upper
a,,- and lower cases.

An alphabetic page number is any letter in the English alphabet in either upper- or lower-
case. Normally lowercase roman numerals have precedence over arabic page numbers, which

-precede alphabetic page numbers. However, other precedence schemes should be permitted.
In our system, the user can specify a different precedence rule by rearranging the order of a
five-letter string bound to page-precedence. As shown in Table 2, the default is "rnaRA,
which denote, in that order, lowercase roman, numeric or arabic, lowercase alphabetic, up-
percase roman, and uppercase alphabetic, respectively.• -v, Some document styles organize page numbers according to chapter or section breaks. This

means the page count is reset every time a new chapter or section begins. Each page number

"Actually, the complete set of roman numerals has four more letters V, f, 1, and Mn which correspond to
5,000, 10,000, 100,000, and 1,000,000, respectively. The use of these "barred" letters is unlikely to occur in
document processing. Hence they are omitted in the discussion for simplicity.

i ' I -I

q 14

in this case has two fields: a chapter or section number and the page count, separated by a
certain delimiter. For instance, the third page of chapter 12 is 12-3 and the second page of
Appendix D is D-2. In some other context, the occurrence of an index key may refer to a
section number rather than a page number. This implies the number to be sorted may have
more than two fields. For example, Chapter 3, Section 2, Subsection 1 is represented as 3.2.1.
In other words, the sorting mechanism must be able to handle composite page numbers. The
field separator (i.e. '-' or '.') and the maximum number of levels allowed must be known to
the index processor, perhaps through style specification.

In our implementation, page numbers are all assumed to be in the composite form. The
lexical analyzer decomposes and transforms each of them into an array of individual numbers
in corresponding numeric values. Depending on its type, each of these individual numbers
is offset by a constant so that sorting will be based on straight numeric comparisons. This
offset is determined by the precedence and the range of that particular numeral type.

3.4 Creating Output Index Entries

Once all input entries are sorted, the output index file can be created. First the attribute
bound to preamble is placed into the output file. Then goes the string

setpageprefix N setpage-suffix,

provided N is the starting page number and such a setting is requested. Next each entry in
the sorted list is processed in order. Finally the attribute bound to postamble is appended
at the end of the output file.

To place appropriate specifiers for the current entry, it is necessary to look behind at the
previous entry. The current entry is discarded if it is a duplicate of the previous one. If the
current key turns out to be the beginning of a new group, the extra vertical space bound to
group-skip will be inserted. In addition, if the new group contains strings beginning with a
letter different from that of the previous group, the attributes bound to lethead_'s will be
used. Suppose the new letter in uppercase is X, if lethead-f lag is positive, then

lethead-pref ix X lethead-suff ix

will be inserted. Similarly a lowercase letter will be inserted if the flag is negative. 7]
For a brand new entry (i.e. the current and the previous entries share no common prefix),

the attribute of the corresponding level specifier (item-i's in our example) is entered into the r
output buffer, along with the actual key, the key/page delimiter (delim-i's), and then the
literal page number, if any. If an entry has a non-nil encapsulator string, the three encap_'s
are used to enclose the page number.

If the current index key shares a common prefix with its predecessor, the attribute corre-
sponding to the current subindexing level is attached in front of that particular level's actual p
key. If the current entry has an aggregate index key identical to the previous one, the current
page number is concatenated to the end of a page list with dolim.n attached in front of it.
This page list is wrapped around if it becomes too long (see Section 3.2, item 8). When a ">4
new entry is found, the page list is flushed into the output and a new list is created.

-N.0

15 C

Forming an implicit page range is relatively straightforward. First off, the page number L
of a new entry is always recorded and assumed to be the range opening number. The current -4

page number is in range if it is the immediate successor of that of the previous entry and is

more than two pages apart from the opening number. An in-range page is dropped unless it
is the dosing number, in which case the opening and closing numbers are inserted into the
page list with the separator delim-r in between.

A somewhat subtle issue arises with regard to explicit page range formation. Consider
the following list of entries

\indexentryfalphal (}{1.
\indexentry(alpha I bold'{3"
\indexentry(alpha I))(7

which depicts an explicit range between pages 1 and 7. The problem is with the second entry
which is in this explicit range but with a page encapsulator inconsistent with that of the range
opener. Facing this inconsistency, one can simply ignore this in-range entry and issue an error
message in the output transcript. This probably makes sense because normally entries like

\indexentryfbeta }{3}
\indexentryfbeta [bold}{3}

are considered an anomaly. But what if a generic concept is covered between pages 1 and 7

while a primary definition occurs at page 3 and is to be set in boldface? Our index processor
is more tolerant. Instead of ignoring the entry, it extracts the entry in question out of the
range so that the result becomes

\item alpha, \bold{3}, 1-7.

Meanwhile, a warning message will go into the transcript cautioning the author about this
anomaly.

3.5 Miscellaneous

Greater flexibility can be achieved by providing the user with options to choose between white
space verbatim and white space compression, between word ordering and letter ordering, and
among various group precedence schemes. This can all be implemented as extra parameters
in the style specification or as command line switches.

An important feature of our index processor is an option to set the starting page number
for separate formatting purposes. In addition to any numeric page numbers, it also accepts
three special non-numeric values: any, odd, and even. In any of the three special cases, the

starting page number is retrieved from the transcript generated as a result of formatting thf,
document source. If the user specifies any, the starting page number of the index is the last
page of the source plus 1. In the other two cases (odd or even), it is adjusted accordingly.

For separate formatting to be successful, new attributes must be assigned to preamble
and postamble to incorporate a global context consistent with the main document (cf. Sec-
tion 2.4). In ITEX, each document must begin with a command that tells the system what

4.. . ,. . , , . . -.,. ,---,-., . - ._.. % '.' . ,, ' ., .; ., .,".,,,,, ', ,' .- , - - ,

,.. . .-,,- ".

16

style the document is in. What we need in this case is simply append the same style command
used in the main document source in front of the default index preamble given in Table 2.
Then, with an appropriate starting page number setting and this new style specification, the
file generated by the index processor is all set for separate formatting.

Error handling and warning messages are of great importance. Except sorting, each of
the other passes in index processing (style scanning, input index scanning, and output index
creation) may produce errors. To generate informative error/warning messages the premise
in a batch-oriented approach is keeping track of line numbers in the various files involved.
There are basically two input files (the raw index and the style specification) and one output
file (the sorted index). Due to the multi-pass nature, some errors won't be caught until the -

last pass. Warning messages about certain line numbers in the output file make no sense to
the user because as errors the processor may not be able to generate anything meaningful for
them. As a remedy, input line numbers in the raw index can be saved along with keywords
and page numbers by the scanner so that errors caught after sorting may be related to their
original occurrences in the input file.

In a WYSIWYG environment, it is possible to do this more interactively. That is, the
erroneous entry can be displayed in a dialogue box with a request for correction; or the editor
can position itself to the error spot in question and the user can make changes on-line.

4 Placing Index Commands

In this section we introduce a simple framework for placing index commands in a document.
It assumes an interactive editor is available with the following functionality:

e String Search. This refers to the positioning of cursor to the specified pattern. Regular
expression search is a plus, but not essential.

e Query-Insert. This refers to displaying a menu of options and upon user's selection.
the insertion of a specified key, together with other constant strings (e.g. the index
command and its argument delimiters).

W~e have an implementation of this framework built on top of GNU Emacs [20] as part of anI
interactive environment for composing TEX-based documents (11]. We believe the underlying
model applies not just to conventional text editors but to WYSIWYG systems as well.

4.1 Basic Framework

The basic framework is very simple. All the author needs is to specify a pattern and a key.
The editor then finds the pattern, issues a menu of options and inserts the index command
along with the key as its argument upon the user's request. In our example, suppose both
pattern and key are alpha, then the inserted string after an instance of alpha in the document
will be \index~alpha}. This will be a visible insertion in a source-based situation and will1
be an invisible insertion for a WYSIWVYG system (or a visible one for its shadow pages).

..........

VFW-

17

Before the actual insertion is made, it is desirable to make a confirmation request that
allows a menu of options to be presented of which confirmn and ignore are the most obvious

-~ ones. Thus for each instance of the pattern found, the user can decide if it is to be indexed.
* Representing patterns as regular expressions gives significantly more power to this querv-
-~ insert operation. The same key can represent a complicated string of a basic pattern, its

capitalized form, its acronym, and other abbreviations. For instance, the following patterns
may all be indexed by the key UCB,

University of California, Berkeley
Berkeley
berkeley
UCB

As a special case of this <key, pattern> setup, one can take words in the neighborhood of
* current cursor position as the implicit value for both the key and the pattern. Some editors

allow the use of special characters to delimit word boundaries. This can be used in searching
to cut down on the number of "false drops". For example, one can position the cursor after
the desired pattern and with one editor command (typically in two or three key strokes). -

an index entry will be inserted with the preceding word (or words) as the implicit key. The
2 advantage of this facility is that there is no need to do the typing as far as the key-pattern pair

is concerned. The same idea also applies to a region of text, which is a piece of continuous
text in the document. In Emacs this is everything between a marker and the current cursor
position. More generally, the implicit operand can be the current selection, in which case the
bounding positions of the selected text are not necessarily the insertion point.

We also have a special command to index every author name which appears in the bibli-
ography or references section of a document. This involves skipping citation entries without

-~ an author field and for each author name found, issuing a query-insert prompt similar to the
normal case. Instead of entering a name directly as the index command argument, it has to
display it in the form of last name followed by first and middle names for confirmation, as in

Confirm: Knuth, Donald E. .~

This is because we want last names to be the primary sort keys and the name separation
heuristic we derived does not always work for people with multi-word last names. The con-
firmation prompt allows the user to correct it before automatic insertion takes place.

4.2 Key-Pattern List

A collection of these <key, pattern> pairs can be compiled in a list. A global function can
.1then be invoked to process each pair for the entire document or parts of it. This list can I

created off-line by the user, or automatically io an incremental fashion as the user confirms
new index insertions in an interactive session. The pattern matching mechanism m~ust be able
to recognize and skip instances already indexed so that unnecessary repetitions are avoided.

In our system, this key-pattern list is per document. If a document includes multiple filies.

J

.01

V
IL 3"a,,JW "*-

% 18OWN

the global function will process each of them according to the preorder traversal of the file
inclusion tree.

4.3 Indexing Menu

For each instance of the pattern found, a menu of options such as the following may be
presented.

e Confirn.
1'°

* Ignore.

* Key-Pattern List. Add the current <key, pattern> pair to the list associated with the 3'
current document.

N Index Level. Prompt the user for an index prefix. The level operator ('!'), if not given
at the end of the specified string, should be inserted automatically between the prefix
and the current key.

Actual Field. Prompt the user for the actual field corresponding to the current (sort)
key. The actual operator ('G') should be automatically inserted in between.

* Page Encapsulator. Prompt the user for the page number encapsulator. The encap
operator ('I '), if not given, should be attached in front of the specified string. Encap-
sulators corresponding to popular fonts such as bold, italic, and slanted, or to cross
references like see and see also can be implemented as a submenu to yield even greater

*" convenience.

4.4 Extended Framework

A typical scenario for placing index commands under the extended framework is as follows.
There are two query-insert modes to operate with: one based on single key-pattern pair and
the other on multiple key-pattern pairs. In the former mode, the user specifies a pattern and
a key, and for every instance of the pattern found, he decides whether to insert the index
command with the specified key, or a variant of it (i.e. a combination of level, actual.
and encap). In the latter mode, each key-pattern pair in the global list is processed in a
way identical to that of the former mode. In essence the former is just a special case of the
latter. Also, the menu option to enter the current key-pattern pair into the global list makes
it possible to converge the two modes.

5 Direct Manipulation and Beyond

Although we have not implemented our ideas under the direct manipulation paradigm. a
number of WYSIWYG systems do support an indexing facility dose to our specification.
We discuss three of them briefly to indicate the applicability of the principles depicted in

.~-, ~ i :. .. ,. ftZ ...- 3 .Fr

4.'* 19

the previous sections. Also we take one step further and examine a more elaborate on-line
* indexing facility made possible by the electronic media.

5.1 WYSIWYG Indexing

In Xerox PARC's CEDAR environment [21] the TIOGA editor supports an auxiliary application
called Index Tool [8] that would automatically prepare multiple multi-level indexes (general in-
dex, author index, etc.) with cross references (see and see also) and with substitution phrases

V% (index the phrase "data structures" under "data structure" to handle these automatically).
The Index Tool would take a selection and create an index entry attached to the document

. 6%.r.over the selection range. Index entries could be edited in a separate tool to permit creating the
cross references and substitution text. TJOGA also has a regular expression search capability
via the Edit Tool. The Edit Tool permits a wide range of search and replace operations.

In FRAME MAKER [3], index tags can be placed and edited using a combination of a%
Markers tool and a Search tool. The Markers tool allows one to specify invisible tags such as

* .J*subjects, comments, and of course, index entries. For each marker an associated annotation
can be specified. In the indexing case, this will be the key to appear in the final index.
Page encapsulations discussed previously can also be specified in the Markers window. This
includes explicit page range, fonts, and an option to disable page numbers so that cross

* references like see can be realized. The Search tool can be used to locate the desired pattern
in plain or regular expressions. An invisible character \m can be specified in the Search tool to
identify each occurrence of index markers in the document. Whenever a marker is found, the
corresponding annotation will be displayed in the Markers window. The annotated text can
incorporate special symbols to yield multi-level indexing and actual field substitution similar
to the ones described in Section 3. A processor called fmllook can then be executed off-line
to collect index markers, sort them, and finally generate a formatted index whose style is
customizable via system supplied property sheets.

In the Macintosh version Of MICROSOFT WORD 3.0 [4], an index command is designated
by the "index code" . i. The text between such a code and an "end-of-entry code" such as
a semicolon is regarded as the index key. A colon (:) in the entry text acts as the index
level operator. The output appearance can be refined by using variants of the index code.
For instance, . iB. and . iI. set the page number in boldface and italic fonts, respectively.

i (. and . 0). create an explicit page range, etc. Index entries need to be "compiled" into
the actual index which appears at the end of the document. But before that takes place, the
system must be notified that these index codes are hidden text. An option in the preference
sheet can be set to display hidden text embedded in the document. But hidden text must be
"hidden" when index entries are being compiled; otherwise page number computation will be
incorrect. There are no special tools for entering index codes. The find and change commands
in the Search Menu do not support regular expressions. There are no query-insert mode inJ
the search mechanism. Although abbreviations can be registered as glossary entries, a great
many keystrokes are still required in placing a single index entry.

- - - -- -- - - -

20

5.2 Dynamic Indexing

The hints we have been giving with regard to implementing an indexing facility under direct
manipulation and the three real systems discussed previously are all operating in a multi-pass
fashion much the same as one that works in a language-based system. However, based on its
interactive nature, a WYSIW;YG document editor can probably come up with an indexing
subsystem that follows the same central ideas, but with an user interface more closely related
to the direct manipulation paradigm.

The "directness" may be observed in the following scenario. The author specifies in-
put/output styles by selecting options available in system supplied property sheets. For each
key selected in the document, its corresponding entry in the index is immediately displayed,
along with entries already entered. Sorting is done as the entry is generated for the out-
put. Consequently, the internal structure for these entries can no longer be an array which is
suitable for fast sorting algorithms such as quick sort. Instead, a balanced tree may be the
preferred structure. Insertion and deletion reorganize the tree automatically and a certain
traversal of the tree yields the correct ordering. A symbolic link between a page number in
the index entry and its corresponding actual page is required so that the index doesn't have
to be regenerated when the document is reformatted. In other words, when a page number
changes due to reformatting, all instances of that page in the index change automatically.

One possible extension to this model is the ability to point at an entry in the index
and have the corresponding page located automatically with the keyword highlighted. Thus
indexing becomes a dynamic behavior from the reader's point of view. This typifies the
power of "dynamics" which an electronic document environment is able to offer that does
not exist in traditional printed static material. In addition to dynamic indexing, one can do
such hypertext operations as navigation, filtering, summarizing, etc. [221 effectively based on
markup tags and embedded annotations.

h 6 Evaluation
6.1 Index Placing Subsystem

An important aspect of our system is the framework for placing index commands in the
document. This is a task that has been performed traditionally in an ad hoc fashion. It is
not clear how things are done in this area under the UNIX TROFF environment. Reference [9]
does not indicate any way to assist the author in this process.

Entering index codes in MICROSOFT WORD 3.0 is awkward because its search mechanismn
lacks full regular expression support and query mode is not available whatsoever. Just to
mark one piece of text as an index entry, an ordinary session requires 8 mouse clicks and 4 -

keystrokes. Even with accelerated keyboard abbreviations, it still takes 2 mouse clicks and S __

if keystrokes to mark a single index entry. This is under the situation where the index pat tern
has been located and is identical to the index key. Obviously locating the pattern may involN-

N extra mouse clicks and keystrokes. Moreover, if the index key is different from the pattern.

more keystrokes would be necessary to enter the text for the index key. As a reminder, this

I%

R WV X R 9 W V_ 5C 4 T w.- u, 1-.r nr.O
L'

K W
'
-J

"
NUN K' WT -S*! WZ U.. "" .r

21 """

happens to the marking of each and every instance of index entries. No global scheme is
possible in MICROSOFT WORD 3.0.

The situation in FRAME MAKER is somewhat better because of its more powerful keyboard

macro registration capability. In FRAME MAKER, a specific combination of tools can be used
to enter index tags at desired places. Operations can be recorded as keyboard macros so -'
that repetitions can be done by a single keystroke (the invocation of the keyboard macro).

The problem is that a new keyboard macro has to be defined for each key-pattern pair.
Furthermore, it lacks the systematic global scheme available in our extended framework (see
Sections 4.4) to make the whole process efficient.

In contrast, using our proposed mechanism it takes only 1 to 3 keystrokes to mark a piece
of text as an index entry. We have a global scheme for marking index entries in the entire
document which may span over multiple files. In the single key-pattern case, the same key can
be inserted at a variety of places described by a single regular expression. Patterns already
indexed are skipped automatically. A number of options are available upon each occurrence
of the pattern. Thus marking each instance takes just one keystroke to confirm and it works
uniformly and continuously throughout the entire document. This can be expanded to a V
scheme of multiple key-pattern pairs which works iteratively on a list of different index entries.
Clearly under our system, a significant amount of time is saved not just in typing per se, but

in the user's mental reaction time due to the side effect of unautomated discrete repetitions
as in MICROSOFT WORD 3.0 and FRAME MAKER.

In the production of an index for the book [10], our Emacs Lisp implementation of the

index placing subsystem has proved very useful and effective. The provision for multi-pair -

<key,, pattern> query-insert has been the most time-saving operation according to our experi- ,.
ence. With minor modifications, the same facility would work on placing index commands for
other formatting languages like TROFF and SCRIBE. Adapting it to WYSIWYG environments
is more involved, but given proper editor programming power, the basic principles discussed
in Section 4 should apply without much difficulty.

6.2 Index Processor

The other major portion of our work is a complete index processor implementation with all
the features mentioned in Section 3. The resulting processor is a single C program called

Makelndez. Actually, Makelndex had several predecessors all written as UNIX shell scriptswith embedded sod [171 and awk [7] code. We quickly became unsatisfied with them for

various reasons. One of the concerns had to do with efficiency. Interpreted languages such as .--

sed and awk are satisfactory for rapid prototyping. but they exact certain penalities at run
time. In our experience, MakeIndex was able to process a book index of 3,300 entries in less
than 50 seconds of user time plus an extra 57 of system time on a client node of SUN 3/50
(MC68020 at 12.5 MHz). This is at least an order of magnitude faster than using its most

recent sed/awk predecessor which has only half the features of MakeIndez.
The efficiency issue may evaporate if one argues that normally an index processor is not

used until the document is at its final stage. As far as indexing is concerned, most of the

time will be spent on placing index commands in the document source. There will be only

%-'1

22

few invocations to process raw index entries and therefore a slower processor probably does

not matter. However, we believe a speedup of over an order of magnitude is something not

to be overlooked.

Perhaps more importantly, we switched to a C implementation for its data structuring

and dynamic storage allocation capabilities. The general purpose nature has been our design

goal from the very beginning. Given all the features described in Section 3, it would be
very difficult, if not impossible, to implement them all using awk. For instance, in awk a

dynamic linked list of index entries is impossible and the style handling mechanism with a

comprehensive error processing facility such as that demonstrated in Sections 3.1 and 3.2 is

very difficult to realize.
Our approach is the direct opposite of that taken by make. index, a host of indexing ___

tools [9] built for TROFF. As part of the UNIX TROFF document preparation environment. F o..

these tools are canonical examples of the pipelining model. They are a collection of small

awk programs working together in a very long pipeline. Their claim is that by breaking

the system down into small pieces, it is easier for the user to adapt the package to various

situations not possible to envision in advance. Their approach, therefore, seems to follow the
"do it yourself" metaphor whereby you get a toolkit and assemble the final product yourself.

The basic package covers only those features used by its authors. A third party user has to

modify their awk code if something different is desired.

The design of Makelndez is quite different. Our intention is to build a complete system

by carefully analyzing the tasks involved in index processing. Parameters are derived to form

a table-driven style handling facility. Thus formatter and format independence is achieved by

simple style specification. All the underlying data structures and processing mechanisms are

transparent. Yet it is robust enough to handle different precedence schemes, ordering rules.

etc. To use the system, the user needs not deal with the processing details. If the default

is inappropriate, the only adaptation required is a straightforward table specification for the

style facility.
For instance, by assigning the output index header index, head defined in make. index to

our preamble and other related commands to item_ s, it is very easy to produce an alpha-

betized index in TROFF format from a raw index generated by TROFF. The same technique

applies to other formatting systems. SCRIBE [5], for example, has an indexing subsystem 7
which supports a subset of the functionality described in Section 3. By adapting its raw

index file format as input style and its output appearance commands as output style. its

indexing capability can be readily expanded using Makelndex. In both cases, there is no need

to modify the original code used to generate the raw index (Step II), nor is it necessary to

modify MakeIndez itself.
In essence, the ease of adaptation is not so important as the design specification itself. If for

some reason MakeIndez cannot be directly applied to systems like certain direct manipulation

environments, the issues raised in Section 3 should still be of value to other implementations.

d -

-. "- '
"" '1

I,

23

7 Conclusions

Index preparation is a time-consuming task. Relying on conventional index cards and hand
sorting does not make sense in the age of electronic publishing. We started to implement an
index processing subsystem for IiTEX, but it has since evolved in several directions.

In one we have made the index processor extremely flexible with respect to input and
output formats. This means the processor we implemented is independent of a spe Ific type-

setting system and independent of the format being used. For any document preparation
system adopting the multi-pass approach, its index or glossary can be processed without
modifying the code. All that is needed is a different style specification.

In a second direction, we have built an editing interface which, among many other things.
provides the author with substantial help in placing index commands in the document source.
The underlying framework is very simple to implement and has proven to be very useful.

In a third direction, we have turned our focus to indexing under the direct manipulation
paradigm. We have found that the same specification derived for a language-based environ-
ment will suffice in a WYSINVYG document editor. The indexing facilities in TIOGA. FRAME-

MAKER. and MICROSOFT WORD 3.0 serve as our indirect proofs. Last but not least, an elec-

tronic document environment offers more "dynarnics" than the print medium and certainly
deserves further investigation.

What is not covered in this report is how to arrive at the list of index keys in the first

place. Typically an index key represents something of conceptual importance. Automatic
derivation of concepts from a document requires "artificial intelligence". Because an index i,
a comparatively simple object, it is not difficult to envision how this automatic derivation of
index keys could be done. The problem is that the amount of knowledge which must be built - -

into the system and the work required exceeds the benefits to be achieved.

8 Acknowledgements

We would like to thank Leslie Lamport for his collaboration in the index processor dosigng,

The -'sea lion/seal" and "9 vs. 10 (Bo Derek)" examples in Section 3.2 are also due to him.
We are grateful to Richard Beach for his description of TIOGA'S index processing facility ai.
to Ravi Sethi for the information on TROFF'S index processing tools.

-7-

Z ,.,
', , _ " "- - ..-- i - . -.- . -i . - . -- . -.i --- , .? , 7 ", - , ... '- .- .'. ,;-; . .- " "- .- , ,> .';,

24

References

[1] 8010 STAR Information System Reference Library, Release 4.2. Xerox Office Systems,
El Segundo, California, 1984.

[2] Addison- Wesley Guide for Authors. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1982.

[3] Frame Maker Reference Manual, Version 1.0. Frame Technology Corporation, San Jose.
California, February 1987.

[4] Reference to Microsoft Word, Word Processing Program for the Apple Macintosh, Ver-
sion 3.0. Microsoft Corporation, Seattle, Washington, January 1987. IIr1

[5] Scribe Document Production System User Manual. Unilogic Ltd., Pittsburgh, Pennsyl-
vania, April 1984. 2

[6] The Seybold Report on Publishing Systems. Seybold Publications Inc., Media, Pennsyl-
vania. Published 22 times a year.

[7] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. AWK: A Pattern Scanning
and Processing Language (User's Manual). Computer Science Technical Report No. 118,
AT&T Bell Laboratories, Murray Hill, New Jersey, June 1985.

[8] Richard J. Beach. Personal communication.

[9] Jon J. Bentley and Brian W. Kernighan. Tools for Printing Indexes. Computer Science
Technical Report No. 128, AT&T Bell Laboratories, Murray Hill, New Jersey, October
1986.

[10] David H. Brandin and Michael A. Harrison. The Technology War. John Wiley and Sons.
Inc., New York, New York, 1987.

[11] Pehong Chen. GNU Emacs TEX-mode. Technical Report 87/316, Computer Science
Division, University of California, Berkeley, California, 1986.

[12] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation 1
interfaces. In D. A. Norman and S. W. Draper, editors, User-Centered System Design.
pages 87-124 (Chapter 5), Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey.
1986.

[13] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, May
1984.

[14] Donald E. Knuth. The TEX Book. Addison-Wesley Publishing Company, Reading.
Massachusetts, 1984. Reprinted as Vol. A of Computers & Typesetting, 1986.

4.
• o ,-

Ij. 25 -

[15] Donald E. Knuth. TEX: The Program. Volume B of Computers 6 Typesetting, Addison-
Wesley Publishing Company, Reading, Massachusetts, 1986.

[16] Leslie Lamport. bTBX: A Document Preparation System. User's Guuie and Reference
Manual. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[17] Lee E. McMahon. SED - A Non-interactive Tezt Editor. Computer Science Technical
Report, AT&T Bell Laboratories, Murray Hill, August 1978. Also available in UNLX -

User's Manual.

[18] Joseph F. Ossanna. Nroff/Troff User's Manual. Computer Science Technical Report No.
54, AT&T Bell Laboratories, Murray Hill, New Jersey, October 1976. Also available in -

UNIX User's Manual. F'

[19] Ben Shneiderman. Direct manipulation: a step beyond programming languages. IEEE
Computer, 16(8):57-69, August 1983.

[20] Richard M. Stallman. GNU Emacs Manual, Fourth Edition, Version 17. Free Software

Foundation, Cambridge, Massachusetts, February 1986.

[21] Warren Teitelman. A tour through Cedar. IEEE Software, 1(2):44-73, April 1984.

[22] Nicole Yankelovich, Morman Meyrowitz, and Andries van Dam. Reading and writing
the electronic book. IEEE Computer, 18(10):15-30, October 1985.

tI

d.

e3.

'a"S

"- " -- .. ' . -. .

.•f\P V°

